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In conventional structure refinement, the discrepancy between the calculated
magnitudes and those observed in X-ray experiments is attributed to errors
inherent in preliminary assigned values of the model parameters. However, the
chosen set of model parameters may not be adequate to describe the structure
factors precisely. For example, if some atoms are not included in the current
model, then the structure factors calculated from such a partial model contain
‘irremovable errors’. These errors cannot be eliminated by any choice of the
parameters of the partial structure. Probabilistic modelling suggests a way to
take irremovable errors into account. Every trial set of values of the model
parameters is now associated with the joint probability distribution of the
calculated magnitudes, rather than with a particular set of magnitudes. The new
goal of the refinement is formulated as the search for the distribution that is the
most consistent with the observed data. The statistical likelihood is a possible
measure of the consistency. The suggested quadratic approximation of the
likelihood function allows the likelihood-based refinement to be considered as a
kind of least-squares refinement that uses appropriate weights and modified
targets for the calculated magnitudes. This in turn enables the analysis of
tendencies of the likelihood-based refinement in comparison with the classical
least-squares refinement.

1. Introduction

Of recent attractive ideas in crystallographic refinement, one
is to enhance its power by maximization of a likelihood
function instead of the conventional minimization of the least-
squares (LSQ) criterion. A special type of this likelihood
function, which was used primarily for the evaluation of model
quality (Lunin & Urzhumtsev, 1984; Read, 1986, 1990; Lunin
& Skovoroda, 1995; Urzhumtsev et al., 1996), was suggested
recently as a new goal function for the refinement of atomic
models (Pannu & Read, 1996; Bricogne & Irwin, 1996;
Murshudov et al., 1997; Adams et al., 1997; Pannu et al., 1998).
While the practical use of this approach has demonstrated
encouraging progress, the theoretical reasons to change the
refinement procedure are still not clear. The likelihood func-
tion always has some probabilistic model behind it and the
clear understanding of that model and its links to the like-
lihood-function parameters is necessary to manage the
refinement process, which is different from the classical LSQ
refinement, as illustrated in §2 below. It is important to stress
that the likelihood-based strategy (ML refinement in what
follows) changes the course of the work and involves new
tendencies in the refinement. To analyse these tendencies, a
quadratic approximation of the ML residual is derived and

studied in §3. Simple test calculations (§4) illustrate this study.
Some technical details are discussed in Appendices A and B.

In the process of the conventional LSQ refinement, the
magnitudes {F<} ¢ calculated from the current values of
atomic coordinates and from other model parameters are
fitted to the observed structure-factor magnitudes {F°*},q,
minimizing the residual

Orso = X wy(kFete — Fob) (1)
sesS
or
00 = X Wl (kFe? — (F PP )
seS

The weights {w},.¢ may reflect the accuracy of the observed
magnitudes or other effects. When refining structures of small
molecules, the weights w, = 0,2 are usually used, where o,
reflects the accuracy of the measured F°*. In protein crys-
tallography, the weights are sometimes ignored and the
minimization of (1) or (2) is performed with unit weights.
Usually, the scale factor k is calculated for the given values of
{Fei} ¢ and {F*} ¢ to minimize the chosen criterion.

A likelihood function appears when some probabilistic
models are introduced in order to describe structural features
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or experimental environments that affect the structure factors
but are not reflected explicitly in the current model. Such
features will be referred to as ‘irremovable model errors’. For
example, at early stages of the structure solution, approximate
atomic coordinates may be known for a part of the model only.
In this case, the calculated structure-factor magnitudes do not
coincide with the observed ones even when the true coordi-
nates for the partial-model atoms are found. An attempt to
force the calculated magnitudes to be as close as possible to
the observed ones may move the atoms of such a partial model
away from their true positions in the course of refinement (see
§4 for examples). A possible way to overcome the obstacle
may be to use a probabilistic modelling and to take the missed
atoms into account indirectly, for example:

(i) estimate for every trial partial model how large would be
the probability to reproduce the observed magnitude values if
the model were to be completed randomly by the necessary
amount of missed atoms and the structure factors were to be
calculated from such a combined model,

(ii) among all possible partial models choose the model that

maximizes this probability.
The probability mentioned above is the likelihood value and
the suggested approach is the maximal-likelihood principle for
the choice of parameters of a probability distribution (in the
considered case these parameters are the atomic coordinates
of the partial model). Such an approach occupies an inter-
mediate position between the full ignorance of the missed part
of the structure and the extension of the set of model par-
ameters by adding new atoms.

In the procedure, usually referred to as ML refinement, the
residual (1) is replaced by the negative logarithm of the
likelihood. The model-dependent part of this new residual
may be represented (see Appendix A for details) as

QML = Z ql(Fscalc; Fsubs’ Ols’ IBS) = min, (3)

ses

with

v - az(F;:alc)Z ' ‘1 <2asF:alcF;)bs)i|
- 0

‘ 8513s 8s:3s
for acentric reflections,
U= @)
012 Fcalc 2 B o Fcalc Fobs
v, = M — In| cosh ==s_"s
285ﬂ5 L Esﬁs

for centric reflections.

Here the parameter ¢, depends only on the reflection indices
and on the particular space group I' = {(R,, t,)},_; and may
be calculated as the number of reciprocal-space symmetries
R that when applied to the vector s leave it invariable, i.e.
R’s = s. The notations I, (and I, below) and cosh (and tanh
below) represent the modified Bessel functions and the
hyperbolic cosine and tangent, respectively.

The parameters o, and S play the key role in the definition
of new targets and influence significantly the results of the
refinement (Afonine ef al., 2001, 2002). These parameters and
their values are linked to the probabilistic model used to

describe irremovable errors (Lunin & Urzhumtsev, 1984;
Read, 1986; Lunin & Skovoroda, 1995; Pannu & Read, 1996).
Usually, the parameters o and f, may be considered as
constant inside thin spherical shells in reciprocal space. To
some extent, the values {c} reflect the scale of irremovable
coordinate errors in the model, e.g. they may be defined by the
mean difference between the coordinates of atoms of the
studied object and those of the search model used for rigid-
body refinement (see §2.2 below). The values {8}, reflect both
the irremovable coordinate errors in the model and the
amount of scattering density that is not included in the
calculation of {F¢} _, (undetermined part of the structure,
bulk solvent efc.). Additionally, ¢, and S, contain information
on the scale factor, which must be applied to the calculated
magnitudes to place them on the same scale as the observed
values.

There are two main approaches to estimate these par-
ameters. If there exists some probabilistic hypothesis
concerning the irremovable errors in the atomic model, then
these parameters may be sometimes calculated explicitly [see
formulae (17) and (19) below as examples; more examples are
given by Urzhumtsev ef al. (1996)]. Another way is to obtain
likelihood-based estimates of these parameters supposing a
general form of the distribution and comparing the observed
structure-factor magnitudes with those corresponding to the
starting atomic model (Lunin & Urzhumtsev, 1984; Read,
1986). Test set reflections only must be used in this case to
obtain reliable estimates (Lunin & Skovoroda, 1995; Briinger,
1997; Skovoroda & Lunin, 2000). In what follows, we consider
o, and B to be known parameters.

By its construction, the likelihood function resulting in the
target (3)—(4) is the joint probability distribution of magni-
tudes of independent complex variables (structure factors)
when each of them is distributed according to the two-
dimensional Gaussian distribution and has uncorrelated real
and imaginary parts (Appendix A). Such likelihood functions
arise frequently when the probabilistic model considered for
irremovable model errors results in a Gaussian distribution for
the particular structure factor. To emphasize this common
nature of the function (4), we use the most general form of
notation (« and B) for the two parameters defining Gaussian
distribution (Lunin & Urzhumtsev, 1984). Other notations
may be used for these parameters or for their combinations,
reflecting the specificity of a particular probability model
(Luzzati, 1952; Sim, 1959; Srinivasan & Parthasarathy, 1976;
Read, 1986). It must be noted too that (3)—(4) is not the only
possible type of likelihood-based target and other more
complicated likelihood functions may appear.

The rest of the paper is devoted to a detailed analysis of
(3)—(4) and corresponding consequences. Briefly, when being
considered as a function of F&, any member W in (3) may
have quite different behaviour depending on the value of the
parameter

Acta Cryst. (2002). A58, 270-282

Fsobs
P=—"n ®)
(,B)'?
Lunin et al. - Likelihood-based refinement. 1 271



research papers

(Fig. 1). If F** > (g,B,)"/* (i.e. p>1), the function W first
decreases from zero to some negative value and then increases
monotonically so that its minimum is attained for some posi-
tive value F7, which is different from F™ as a rule. If the
reflection is relatively weak and FO* < (g,8,)"? (ie. p <1),
then the function W grows monotonically with FS° so that its
minimum is equal to zero and is attained for F&' = 0. In this
case, the likelihood-based target fits the calculated magnitude
to the zero value (F} = 0) regardless of the particular value of
Fobs,

In the vicinity of the point of its minimum, any member in
(3) may be approximated by a quadratic function (Lunin &
Urzhumtsev, 1999; Afonine et al., 2001, 2002), leading to

O = Y wi(F& — Fr). (6)

seS

This new residual has the same form as the classical LSQ
residual but the target value for FS° is now the modified value
F} instead of the observed magnitude, and the weight w} is
defined from the curvature of W at the point of its minimum.

The weights w; and the modified target values F; in (6) may
be represented (see §3) as

('gsﬁs)l/2 F:bs * O{Z F;)bs
= M[(Ssﬁs)m]’ Ws:csa”[@sﬂs)m}’ @)

where p(p) and v(p) are some uniquely defined functions. The
‘attenuating’ function u(p) is equal to zero for 0 < p <1 and
is defined for any p > 1 as the unique positive solution of the
equation

F*

S

S

L (2
=p M for acentric reflections (8)
1,(2pp)
or
u = ptanh(pu) for centric reflections 9)

[some ways of explicit calculation of u(p) are discussed in
Appendix B]. The plots of this function for the centric and
acentric cases are shown in Fig. 2.

The ‘weighting’ function v(p) is defined as

*(q)
obs
20 20 p:—ﬁ >1

aF‘calc
Tl

_2 i _2 B T T

0 4 8 0 4 8

Figure 1

The behaviour of the target function W in the residual (3)-(4) for
relatively weak (p = 0.7, acentric, left) and relatively strong (p =2,
acentric, right) observed magnitudes. The modified observed magnitude p
is defined as p = F°%/eB. The dependence on the modified calculated
magnitude ¢ = aF /g is shown.

-p for0<p =1,

[1—p*+u(p)] forp>1,
for acentric reflections  (10)

1
b(p) = { .

and

v(p) =1—p*+ 1’(p), for centric reflections.  (11)

The plot of v(p) for the centric and acentric cases is shown
in Fig. 3.
The coefficient ¢, is defined as

{1
Cs = 1
2

The presentation of the goal function in the form (6) allows
one to perform a sort of likelihood-based refinement with the
standard LSQ refinement tools. This extends the possibilities
to test various probabilistic models for irremovable errors and
different sets of parameters of the likelihood function.

The following convention is used below to distinguish real,
complex, scalar and vector variables. The italic style is used for
structure-factor magnitudes (F°%, F etc.) and real variables
and parameters, while complex values of structure factors are
shown in bold (F*¢, FP*" efc.). The bold style is used also for
three-dimensional vectors of atomic coordinates (r, u etc.) or
Miller indexes (s) and six-dimensional vectors of rigid-body
parameters (®). Braces {...} are used to denote a set of

for acentric reflections,
for centric reflections.

(12)

3 -.U(P)

Figure 2
The ‘attenuating’ function (8)—(9) for centric (u.) and acentric (u,)
reflections.

v(p)

0 1 2 3

Figure 3
The ‘weighting’ function (10)-(11) for centric (v,) and acentric (v,)
reflections.
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values, e.g. {F°®} means the set of all observed magnitudes,
{rj} means the set of coordinates of all atoms included in
the model efc. Angular brackets (...) are used for mean
(expected) values of random variables.

2. Irremovable errors in the modelling and maximal-
likelihood principle

There exist several reasons why the structure-factor magni-
tudes calculated from an atomic model differ from the
observed values. The first of them is the presence of errors in
the current values of variable parameters of the model; the
final goal of the refinement is to remove these errors, i.e. to
find the exact values for these parameters. In what follows,
such errors are called removable. Another, quite different,
type of error is that caused by imperfect composition of the
model or imperfect algorithms used to calculate structure-
factor magnitudes starting from the variable parameters. The
simplest example is the presence in the crystal of atoms whose
contribution to the diffraction is not included in the calculated
magnitudes. Another example is the difference between the
true atomic structure and a search model used for the mole-
cular replacement or for the rigid-body refinement. In the
latter case, structure-factor magnitudes calculated from this
model are different from the experimental values, even when
the optimal model parameters are chosen. Changing the
variable parameters of the model cannot eliminate such
errors; thus we will refer to them as irremovable errors. One
more source of discrepancy between the calculated and
observed magnitudes is experimental errors. They too may be
considered as irremovable errors.

While optimization of parameters is widely discussed in the
literature, the second type of error, namely irremovable errors,
demands special study. To make our analysis more clear, in the
following sections we study independently several idealized
situations where only one source of irremovable errors is
present at a time. More general questions are discussed in §2.4.
An attempt to combine different kinds of information may
present extra difficulties and additional approximations are
necessary (Pannu & Read, 1996; Read, 2001).

2.1. Free-atom refinement of a partial model

Let us consider a situation where an approximate atomic
model (M atoms) for a part of the structure is available while
the positions of the rest of the atoms (N — M atoms) are
unknown. We denote corresponding coordinates {r} —, and
(w2 11 If the observed magnitudes do not contain errors
and the complex values F?*"({r;}) and F*'({w;}) represent the
partial structure factors calculated separately for the atoms
included in the current model and for those that are lost,
respectively, then

F:bs ‘Fpart({rtrue}) + F]ost({u

(13)

true true

where 1™ and w;"® are the exact values of the atomic coor-
dinates. As a consequence, in the general case,

F™ # [ (™)) (14)

and fitting FP to FO%, as suggested by the LSQ criterion (1),
may move coordmates {r} ~, away from their exact values.
This shows that the comparison of calculated and observed
magnitudes is justified only when the contribution F°' of the
lost atoms to the structure factor is small enough or if FI°" is
taken somehow into account. Probabilistic modelling allows
one to introduce such a correction.

Let us suppose that the atomic coordinates {u,}y_,, 4 for
the lost atoms are chosen randomly (e.g. uniformly in the unit
cell) and the corresponding partial structure factors {F\*'} are
calculated and added to those for the fixed partial model. The
combined magnitudes are now defined as
[FE(fr;}) + B ({w, ) (15)

Fcomb

Calculated values {F:°™} are different for different choices
of the random coordinates {u,}}_,, 41 and in general do not
coincide with the observed values. Nevertheless, the question
can be posed ‘how large is the probability that the magnitudes
calculated in (15) will occasionally coincide with {F°*}" or,
more appropriately, ‘will be close enough to these values’?
This probability depends on the fixed partial-model coordi-
nates {r; }] ;- If these coordinates are exact, then there exists, at
least theoretically, a chance that randomly chosen {u, }}_,, 41
values will be close to {u{“};_,, +1 so that {F£°™} values will be
close to the observed magnitudes. On the contrary, if the
coordinates {r; } —, are completely incorrect, such a correction
of structure factors by (15) may be impossible. The value L of
this probability may distinguish poor partial models from the
correct one. Going further, the partial model that maximizes

L({r;}) can be searched. The model that maximizes the chance
of correct completion by randomly adding the lost atoms may
be considered as a new goal of the refinement.

More formally, for every trial partial model {r; }j 1, We
consider the coordinates of the lost atoms as primary random
variables and define new random variables {F®®™} via (15).
For these new variables, we consider their joint probability
distribution P ({F¢°"*}; {r;}) and define a measure of the
quality of the partial model as the value of this function
calculated with FmP = F°% je as the probability to obtain
the observed magnitudes

L({r}}) = P™((F™); (). (16)

In the mathematical statistics, the value L({r;}) is called the
likelihood and the search for the partial model that maximizes
the likelihood is nothing but the widely used maximal-like-
lihood approach to the estimation of parameters {r;} of the
probability distribution P*"({F.}; {r;}).

Various probabilistic models for a distribution of the lost
atoms in the unit cell may be considered, and they would lead
to different likelihood functions. The realization of the
proposed approach depends on the possibility to calculate the
value of the likelihood (16) for any trial partial model (see
Appendix A). If the hypothesis on uniform distribution of the
lost atoms in the unit cell is used and the observed data are
reduced to the absolute scale, then the maximization of the
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likelihood (16) may be replaced by the minimization of the
residual (3)-(4) with «;, B, parameters calculated as

o=1 and f= 3 [0 a7

k=M+1

Here f,(s) are scattering factors of the lost atoms.

2.2. Rigid-body refinement of a full model

Rigid-body refinement is an essential part of the molecular
replacement method where an atomic model of a homologous
structure (the search model) properly placed in the unit cell is
used to calculate approximate values of the structure-factor
phases. The search model may be incomplete and imperfect,
i.e. it may differ from the corresponding part of the model of
the macromolecule under study. Likelihood-based residuals
allow one to take this into account and thus extend the
possibilities of the refinement (Read, 2001). For simplicity, in
this section we consider the case of a complete but imperfect
search model and suppose that the observed magnitudes do
not contain errors [for a more general analysis, see Read
(2001)]. The search model is moved as a rigid body, varying its
rotation and translation parameters @. If the search model is
imperfect, then for any choice of @ its atoms cannot fit
precisely together all the atomic positions of the studied
structure. This means that the calculated magnitudes F&°(@)
do not coincide with the observed ones, even for the optimal
rotation and translation parameter values.

The coordinate errors remaining in the optimally placed
model are irremovable in the frame of the rigid-body refine-
ment, i.e. they cannot be reduced to zero by any choice of the
rigid-body parameters. Nevertheless, these errors may become
removable at the next stage of the structural study when all
atoms are allowed to change their positions independently of
others (possibly being restrained by some conditions).

Similarly to the case studied above, a probabilistic model
can be used to replace unavailable information about differ-
ences in atomic positions in the optimally placed search model
and the structure under study. Let @ represent current values
of the rotation and translation parameters and {rj»“‘mh(@))}j’i1
be the atomic coordinates of the search model, rotated and
translated correspondingly. As previously, the question can be
posed as to how large is the probability that the calculated
magnitudes F'({r;*""(@) + Ar;}) are equal to the observed
ones after random independent corrections {Ar; j’il have been
introduced into the search model coordinates. Here the
maximal-likelihood choice of the parameters @' means the
search for such a model position and orientation that maxi-
mize this probability:

L(®) = P ({F*™); ©) = max, (18)

where P °({F.}; ®) represents the joint probability distri-
bution of random variables Fe*“({r*""(®) + Ar;}) defined
through the primary random variables {Arj}ilil.

Similarly to the previous section, the likelihood function
depends on the probabilistic model of distribution of errors in
the search model. For the case of independent errors posses-

sing an isotropic Gaussian distribution, the maximization of
(18) may be reduced to minimization of the function (3)-(4)
with the parameters o, and S, defined as

o, = (cos 2nt(s, Ar))) = exp(—mw’s*/4),

ul (19)
2
By = (1 — o) 3 f(s).
=1
Here fi(s) are the scattering factors of atoms of the search
model and o represents the expected mean error in the
position of these atoms.

2.3. Errors in the observed magnitudes

One more possible source of irremovable discrepancies
between the calculated and the observed magnitudes is
experimental errors in the observed magnitudes. In this
situation, the calculated magnitudes can be corrected by some
random values AF; in order to simulate the experimental
errors:

Fo = F({r,)) + AF,. (20)

Similarly to the previous sections, for the given model par-
ameters {ri}jl\;], the question can be posed as to how large is the
probability P<"({F™}) to make the calculated magnitudes
Ffalc({rj}) equal to the observed ones by these random
corrections AF,. The maximal-likelihood choice in this case
means the search for the model parameters that maximize

L({r}) = P*"({F™)) = max. @D

Obviously, there is little sense in such a general formulation
until it is determined which random corrections of magnitudes
may be considered as reasonable or, in other words, until some
precise probabilistic model for the experimental errors has
been introduced. To define these terms, it is necessary to know
something about the accuracy of the data collection, ie. to
introduce new information into the problem. If it is known
(e.g. from multiple measuring of the same reflection or
equivalent reflections) that the experimental errors present in
the observed magnitudes may be considered as independent
ones, distributed in accordance with the Gaussian distribution
with mean zero and standard deviations o, then the likelihood
function (21) may be written as

1 [FE({r)}) — F™P
L({nh) = 1_[ (2m) /20, exp{ B ]2082

so that the maximization in (21) may be replaced by the
minimization

1
—InL({r;}) = —Xs:l“[Wmoj

1
+1) SR () - F™F

}, (22)

=> min. (23)

The variable part of (23) is nothing but the conventional target
(1) and therefore the conventional crystallographic refinement
may also be considered as a ML refinement. This is not
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surprising because of the profound links between the like-
lihood and least-squares methods in mathematical statistics.

2.4. Statistical refinement

The approach suggested above may be generalized as a
concept of statistical refinement.

The conventional structure refinement may be described as
follows. There exists a formula or a computer algorithm that
enables a set of structure-factor magnitude to be calculated
starting from a set of atomic parameters (coordinates,
temperature factors, occupancies etc.). In other words, every
set of model parameters is associated with a set of corre-
sponding calculated magnitudes. If a set of experimentally
obtained magnitudes is available, the goal of the conventional
refinement is formulated as:

To choose the set of atomic parameters for which the corre-
sponding calculated magnitudes are the most consistent with the
experimental data.

Different measures may be used to evaluate this consistency
numerically, e.g. (1) or (2), and they may lead, formally
speaking, to different results.

If the formula (algorithm) connecting the model parameters
with the structure-factor magnitudes is imperfect and does not
allow one to reproduce the experimental data precisely, even
for the exact model parameters, then a statistical model for the
necessary corrections of the formula may be used. In this way,
every set of model parameters is associated with a joint
probability distribution of structure-factor magnitudes, rather
than with a single set of calculated magnitudes. If it is assumed
that the set of observed magnitudes is known, the goal of the
new statistical refinement may be formulated as:

To choose the set of atomic parameters for which the corre-
sponding joint probability distribution of magnitudes is the
most consistent with the experimental data.

Similar to the LSQ case, different ways to evaluate the
consistency numerically may be used and they are the subjects
of the mathematical statistics. One of the possible ways is to
use the likelihood value as this measure of the consistency, as
discussed above. Alternatively, one can search for the prob-
ability distribution (i.e. for corresponding model parameters)
for which the expected values of the structure-factor magni-
tudes are as close as possible to the observed ones (Adams et
al., 1997). Such an approach is close to ‘the method of
moments’ in mathematical statistics. Naturally, other statistical
approaches may be tried as well.

It must be emphasized that a new important object appears
in the statistical refinement besides the current model par-
ameters and the set of experimental data, namely a prob-
abilistic model for the source of the imperfection in structure-
factor formulae. The choice of the probabilistic model for
irremovable errors plays the key role. This probabilistic model
introduces additional information into the process of refine-
ment and the success of the refinement depends strongly on
the correctness of this information. For example, in the case

considered in §2.1, we might specify the hypothesis regarding
the distribution of the lost atoms. The simplest way is to
suppose that these atoms are distributed uniformly in the unit
cell. At the first stages of a structure investigation, when side-
chain atoms are not included in the model, such a hypothesis
seems to be reasonable. However, later, when the bulk solvent
atoms only are absent, more detailed hypotheses might be
needed. Obviously, different probability hypotheses result in
different likelihood functions and in different refined models.
Similarly, in the case considered in §2.2, the hypothesis about
the distribution of errors in the search model must be speci-
fied. Sometimes, extra information may be used for these
purposes (Read, 2001). Naturally, such probabilistic informa-
tion is much weaker than the deterministic information
introduced by the conventional extension of the model.
Nevertheless, even such weak information may improve the
results of the refinement.

After some probabilistic models for irremovable errors
have been chosen, the corresponding likelihood must be
derived as a function depending on the variable model par-
ameters. A simplification generally used is to neglect the
correlation of structure factors and to consider calculated
structure factors as independent random variables. In this
case, the joint probability distribution may be written as a
product of individual distributions and the logarithm of the
likelihood becomes a sum of logarithms of these distributions
(see Appendix A).

3. Local structure of the ML target function

In this section, a quadratic approximation for the function (4)
is derived in the case of a centric structure factor. This high-
lights new tendencies that appear in ML-based refinement in
comparison with the standard LSQ refinement. The formulae
for acentric reflections are very similar to those corresponding
to the centric case; they are derived in Appendix B.

3.1. Quadratic approximation of the residual

If dimensionless variables are introduced as

asF;:alc Fsobs
x=—+— and p=—71—:, (24)
(e,8)'? (e,8)'?
then the centric term (4) in the residual (3) becomes
U = y(x; p) = &* — In[cosh(px)]. (25)

Asymptotic expansions for the logarithmic function and
hyperbolic cosine lead to

Y(x; p) ~ 31 — p*)x* for small x (26)
Y(x; p) = L? for large x. (27)

This explains the behaviour of the function V¥ in Fig. 1 and
confirms the key role of the parameter p. It follows from (26)
that for p? < 1 the function y¥(x; p) grows starting from x = 0
and reaches its minimal value at x = 0. For p? > 1, this func-
tion first decreases when x grows from zero, reaches the
minimal value at x = x* > 0 and then increases infinitely.
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In the case p? <1, the quadratic approximation for the
function ¥(x; p) in the vicinity of the point of the minimum is
given by (26). For p? > 1, the quadratic approximation may be
written as

Y p) = Y(x*s p) + 39 (7 p)a — x)°, (28)

where x* represents the point of the minimum of ¥(x; p). This
point may be found as the solution of the equation

¥ (x*; p) = x* — p tanh(px*) = 0, (29)

with the additional condition ¥ (x*; p) > 0.

Equation (29) has the trivial solution x = 0 for any value of
the parameter p. For p? <1, this solution is unique and
Y'(x*;p) =31 —p*) >0, so that the conditions of the
minimum are satisfied. For p? > 1, two more solutions of (29)
appear, one negative and one positive. The solution x =0
corresponds now to the local maximum. The positive solution,
which we denote as x* = u(p), corresponds to the point of the
minimum of ¥(x; p). Some methods of practical calculation of
u(p) are discussed in Appendix B. The negative solution
corresponds to another local minimum of ¥(x; p) (see Fig. 4)
with a negative value of x, i.e. with a physically unreasonable
value of the structure-factor magnitude.

The curvature in (28) is

d2

V) =1- p’ + p* tanh’(px). (30)
x

At the point of the minimum x* = u(p), (29) is satisfied and

V(" p) =1 - p + 1 (p). (1)

If v(p) is introduced by (11), ¢ =1 and the function w(p) is
defined to be equal to zero for p? < 1, then the approximation
(28) may be written as

Y(x: p) = Y™ p) + cv(p)lx — u(p)l. (32)

The term ¥(x*; p) does not depend on x and may be removed
from the residual. Coming back via (24) to the values F& and
F° we obtain the residual in the form (6)—(7).

3.1.1. Relative form of the residual. Let the relative
magnitudes be defined as
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Figure 4
The function (25) for different values of the parameter p: p = 0.7 (left)
and p = 2 (right).
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EIs = (gsﬂs)l/z and E's = (Ssﬂs)1/2 . (33)

It follows from (6) and (7) that the quadratic approximation of
the ML residual (3) is equivalent to

Omr = ZS we(o B — EYY (34)
s€

with
Er = p(E™) and w} = c(E™). (35)

This representation highlights new tendencies which appear in
ML refinement in comparison with the conventional mini-
mization of (1).

3.2. Te